
plantit
Release v0.0.2-alpha

Computational Plant Science Lab

Apr 02, 2023

INTRODUCTION

1 About plantit 1
1.1 What is it? . 1
1.2 What isn’t it? . 2
1.3 What can I use it for? . 2

2 Quickstart 3
2.1 Use cases . 3
2.2 Conceptual model . 4

2.2.1 Datasets . 4
2.2.2 Agents . 4
2.2.3 Workflows . 4
2.2.4 Tasks . 4
2.2.5 Projects . 5

2.3 Submitting tasks . 5
2.3.1 Select a workflow . 5
2.3.2 Submit to an agent . 7
2.3.3 Monitor status . 8
2.3.4 Retrieve results . 10

3 DIRT Migration 11
3.1 Migrating DIRT datasets . 11

4 Workflows 13
4.1 Using workflows . 14
4.2 Binding workflows: the plantit.yaml file . 14

4.2.1 Required attributes . 14
4.2.2 Optional attributes & sections . 15

4.3 A simple example . 19
4.4 Repository refresh rate . 20

5 Datasets 21
5.1 Viewing data . 21
5.2 Downloading data . 22
5.3 Sharing data . 23
5.4 Deleting data . 23

6 Agents 25
6.1 Public agents . 25
6.2 Integrating a new agent . 26

7 Tasks 27

i

7.1 Task monitoring . 27
7.2 Task lifecycle . 27

8 Projects 29

9 Examples 31
9.1 Hello world . 31
9.2 Parameters . 31
9.3 Accessing data . 31

10 Architecture 33
10.1 Motivation . 33
10.2 Technologies . 33

11 Contributions 35
11.1 Configuring a development environment . 35
11.2 Command cheatsheet . 35

11.2.1 Docker Compose . 35
11.2.2 Docker . 36
11.2.3 Django . 36

ii

CHAPTER

ONE

ABOUT PLANTIT

• What is it?

• What isn’t it?

• What can I use it for?

1.1 What is it?

plantit is a workflow automation tool for computational plant science. It is simultaneously software-as-a-service for
researchers and a platform-as-a-service for programmers & developers.

Researchers

SaaS for researchers: store, publish, and access data with CyVerse, run (possibly highly parallel) simulations and
analyses from a browser.

1

plantit, Release v0.0.2-alpha

Developers

Paas for developers: built on GitHub and Docker, add a plantit.yaml file to any public GitHub repository to deploy
Docker images as Singularity containers on clusters or supercomputers.

1.2 What isn’t it?

plantit is none of the following (although it tries to glue these systems together in helpful ways).

• a pipeline orchestrator (e.g., Snakemake, Nextflow, Luigi, Airflow, Metaflow)

• a distributed queue or task scheduler (e.g., Celery or Dask)

• a batch processing, streaming, or analytics platform (e.g., map-reduce or Spark)

• a container automation system (e.g., Kubernetes)

• a cluster scheduler (e.g., Torque/Moab, Slurm)

1.3 What can I use it for?

plantit is flexible enough to run most container-friendly workloads. If your software can be packaged with Docker
and invoked on the command line, plantit can probably run it. That said, plantit is designed primarily for batch
processing images in various phenotyping contexts. If you want to do genomics, an established tool like CoGe or
easyGWAS may be a better fit. Feel free to get in touch with questions about your use case.

2 Chapter 1. About plantit

https://snakemake.readthedocs.io/en/stable/
https://www.nextflow.io/
https://luigi.readthedocs.io/en/stable/
https://airflow.apache.org/
https://metaflow.org/
https://docs.celeryproject.org/en/stable/index.html
https://dask.org/
https://spark.apache.org/
https://kubernetes.io/
https://adaptivecomputing.com/cherry-services/torque-resource-manager/
https://slurm.schedmd.com/overview.html
https://genomevolution.org/CoGe/
https://easygwas.ethz.ch/
https://github.com/Computational-Plant-Science/plantit/discussions

CHAPTER

TWO

QUICKSTART

• Use cases

• Conceptual model

– Datasets

– Agents

– Workflows

– Tasks

– Projects

• Submitting tasks

– Select a workflow

– Submit to an agent

– Monitor status

– Retrieve results

2.1 Use cases

plantit aims to support two user groups with different concerns and priorities.

• researchers: analyzing data, running models & simulations (submitting workflows)

• developers: publishing and maintaining research software (publishing workflows)

With plantit the latter group can quickly and easily publish an algorithm to a broader, possibly non-technical user
community. In this way it’s a continuous deployment tool. It’s also a science gateway, hosting plug-and-play algo-
rithms in a web GUI such that any user can leverage XSEDE HPC/HTC clusters for high-throughput phenomics, no
programming experience required.

3

plantit, Release v0.0.2-alpha

2.2 Conceptual model

plantit has a few fundamental abstractions:

• Dataset

• Agent

• Workflow

• Task

A Dataset is a set of data objects. A Workflow is a containerized research application. A workflow must yield a
dataset as output and may accept one as input (workflows should be designed as functions or generators, not for their
side effects — ideally, they should have none). An instantiation of a workflow is called a Task. An Agent is a cluster
queue that can run tasks.

2.2.1 Datasets

A Dataset is a collection of data objects in the CyVerse data store.

2.2.2 Agents

An Agent is a deployment target: an abstraction of a cluster or supercomputer along with SLURM scheduler configu-
ration details.

2.2.3 Workflows

A Workflow is an executable research application packaged into a Docker image. Workflows are deployed in the
Singularity container runtime. To define a workflow, add a plantit.yaml file to any public GitHub repository.

2.2.4 Tasks

A Task is an instance of a workflow, deployed to an agent. When a task is submitted from the browser, the plantit
web app hands it to an internal queue feeding an orchestrator process. When the orchestrator picks up the task, it
generates a job script and submits it to the selected cluster/supercomputer scheduler, then monitors its progress until
completion.

4 Chapter 2. Quickstart

https://cyverse.org/data-store
https://www.docker.com/
https://sylabs.io/singularity/

plantit, Release v0.0.2-alpha

Interactions

2.2.5 Projects

A Project is a MIAPPE investigation, which may contain one or more studies. MIAPPE (Minimum Information
About a Plant Phenotyping Experiment) is a formal ontology for organizing data, metadata, experiments, and analyses.
plantit allows datasets and tasks to be freely associated with MIAPPE projects.

2.3 Submitting tasks

2.3.1 Select a workflow

To explore workflows, navigate to the Workflows tab from the home view.

2.3. Submitting tasks 5

plantit, Release v0.0.2-alpha

Workflows

By default, this page will display the Featured workflow context: a curated set of applications provided by the Com-
putational Plant Science lab, collaborators, and other researchers.

Click the Featured dropdown to select a different context. Options include:

• Examples: a small set of simple workflows to serve as templates and examples

• Public: all publicly available workflows

• Yours: your own workflows (private and public)

• [Organization]: workflows belonging to a particular organization

• [Project]: workflows associated with a particular MIAPPE project

Select a workflow to view its authorship, related publications, parameter list, and deployment configuration.

6 Chapter 2. Quickstart

plantit, Release v0.0.2-alpha

2.3.2 Submit to an agent

Task
information

To configure and submit a task for the workflow you’ve selected, click Submit. This will present some configuration
options including (at least):

• ID: the task’s (unique) identifier

• Tags: arbitrary text tags to associate with the task

• Time: the task’s time limit

• Agent: the agent to submit the task to

• Output: the folder to deposit results in

If the workflow requires input files or parameters, corresponding configuration sections will be shown.

2.3. Submitting tasks 7

plantit, Release v0.0.2-alpha

Task
submission

After all fields have been configured, click the Start button to submit the task.

2.3.3 Monitor status

After a moment the task page will appear. At first there may be no log messages.

Task
status: CREATED

8 Chapter 2. Quickstart

plantit, Release v0.0.2-alpha

Before long the task should be created, scheduled, and started on the appropriate agent. At this point you should see a
few lines of log output:

Task
status: RUNNING

When a task completes successfully, the status will change from RUNNING to COMPLETED.

Task
status: COMPLETED

2.3. Submitting tasks 9

plantit, Release v0.0.2-alpha

2.3.4 Retrieve results

The output folder in the CyVerse data store section will eventually open at the bottom of the view (you may need to
reload the page). Results will be zipped into a file with name matching the task’s ID.

Task
results

10 Chapter 2. Quickstart

CHAPTER

THREE

DIRT MIGRATION

• Migrating DIRT datasets

3.1 Migrating DIRT datasets

DIRT users may elect to migrate their datasets stored in the DIRT system to the CyVerse data store for use with plantit.
This process can be started by selected the drop-down profile menu in the top-right of the plantit web UI:

DIRT
migration

plantit will transfer each of your DIRT datasets to a correspondingly named subcollection within a newly cre-
ated collection in the CyVerse data store. This collection will have path /iplant/home/{your username}/
dirt_migration. (If for some reason you already have a collection with the same name, you will be prompted to
rename it before the migration can proceed.) Once you have started the migration, progress and completion status will
be shown onscreen.

11

plantit, Release v0.0.2-alpha

12 Chapter 3. DIRT Migration

CHAPTER

FOUR

WORKFLOWS

• Using workflows

• Binding workflows: the plantit.yaml file

– Required attributes

∗ Name

∗ Author

∗ Image

∗ Commands

– Optional attributes & sections

∗ Public

∗ Email

∗ Shell

∗ GPUs

∗ Environment variables

∗ Parameters

· Default values

∗ Input/output

· Inputs

· Input types (file, files, and directory)

· Input filetypes

· Outputs

∗ Jobqueue configuration

· Walltime

· Virtual memory

• A simple example

• Repository refresh rate

A Workflow is plantit’s unit of work. Workflows can be research applications of nearly any kind: image processing,
growth simulations, even genome analysis, although we encourage you to first consider whether other free and open
source bioinformatics tools (CoGe, easyGWAS) or commercial services (Benchling, Latch) meet your needs.

13

https://genomevolution.org/CoGe/
https://easygwas.ethz.ch/
https://www.benchling.com/
https://latch.bio/

plantit, Release v0.0.2-alpha

4.1 Using workflows

For a tutorial on exploring and submitting plantit workflows, see the quickstart.

4.2 Binding workflows: the plantit.yaml file

To host a Workflow on plantit, add a plantit.yaml file to some branch in any public GitHub repository.

4.2.1 Required attributes

At minimum, the plantit.yaml file should look something like this:

name: Hello World
author: Groot
image: docker://ubuntu
commands: echo "I am Groot!"

There are five required attributes:

• name: the name of the workflow

• author: the workflow’s author(s)

• image: the Docker image to use

• commands: the workflow’s entry point

Name

The name the workflow will appear under in the plantit web UI. Need not be unique, however it’s generally best to
try to give each workflow a unique, distinctive, relevant name. (This will help potential users of your software to find
it via keyword search.)

Author

The workflow’s author(s) or developer(s). Must be a string, although future versions of plantit may support a list of
strings.

Image

The Docker image to run the workflow with. Must be publicly available on Docker Hub. It’s a good idea to read the
Singularity documentation on Docker/OCI interop before binding a workflow to plantit. Most phenotyping software
is unlikely to encounter issues, but there are a few Singularity runtime compatibility caveats to be aware of.

14 Chapter 4. Workflows

https://hub.docker.com/
https://sylabs.io/guides/3.9/user-guide/singularity_and_docker.html#differences-and-limitations-vs-docker

plantit, Release v0.0.2-alpha

Commands

Your workflow’s entry point. If you have multiple things to do, it’s generally best to put them in a script, rather than
using && to append commands. (This may work for some image definitions, but is not guaranteed to.)

4.2.2 Optional attributes & sections

There are a number of optional properties and sections as well:

• public: whether the workflow should be accessible to all plantit users (defaults to false)

• email: your (the workflow developer’s) preferred email address, e.g. for support/questions

• shell: the shell to use to invoke your entry point (sh, bash, or zsh, defaults to bash)

• gpu: whether this workflow should use GPUs (if available)

• env: environment variables to provide to your container runtime(s)

• params: parameters to be configured at submission time in the plantit web UI

• input: the kind, names, patterns, and optionally, the default path of any inputs to the workflow

• output: the kind, names and patterns of results expected from the workflow

• jobqueue: the resources to request from the cluster scheduler

Public

By default workflows are only visible to you in the plantit web UI. To make a workflow publicly accessible to all
users, set the public attribute to true.

Email

You can provide a contact email via an email attribute. If this attribute is provided, a mailto link will be shown in
the user interface to allow your workflow’s users to easily contact you.

Shell

By default, the command specified in plantit.yaml is invoked directly from the Singularity container runtime, i.e.,
singularity exec <image> <command>. Since Singularity runs in a modified shell environment some behavior
may differ from that produced by Docker. Some Anaconda-based images can be configured to automatically activate
an environment, for instance. With Singularity this cannot be achieved without wrapping the command with bash -c
'<command>' and editing bash startup files in the container definition.

For these reasons plantit provides a shell option. If provided, this option will cause plantit to wrap the command
with ... <shell> -c 'command' when invoking Singularity. Supported values include:

• bash

• sh

• zsh

4.2. Binding workflows: the plantit.yaml file 15

https://stackoverflow.com/a/56490063
https://stackoverflow.com/a/57441264

plantit, Release v0.0.2-alpha

GPUs

To indicate that your workflow can take advantage of GPUs (only available on select deployment targets) add a gpu:
True line to your configuration file. When deployed to environments with GPUs, your task will have access to an
environment variable $GPUS, set to the number of GPU devices provided by the host.

Environment variables

Certain environment variables will be automatically set in the Singularity container runtime when a workflow is sub-
mitted as a task, in case you need to reference them in your entry point command or script:

• $WORKDIR: the current working directory

• $INPUT: the path to an input file or directory

• $OUTPUT: the path to the directory results will be written to

• $INDEX: the index of the current input file (if there are multiple, otherwise defaults to 1 for single-file or -directory
tasks)

You can provide custom environment variables in an env section, for instance:

...
env:
- LC_ALL=C.UTF-8
- LANG=C.UTF-8

...

Parameters

To parametrize your workflow, add a params section. For example, to allow the user to configure the message printed
by the trivial workflow above:

name: Hello Who?
author: Groot
public: True
clone: False
image: docker://alpine
commands: echo "$MESSAGE"
params:
- name: message
type: string

This will cause the value of message, specified in the plantit web UI at task submission time, to be substituted for
$MESSAGE in the command at runtime.

Four parameter types are supported by plantit:

• string

• select

• number

• boolean

See the Computational-Plant-Science/plantit-example-parametersworkflow on GitHub for an example of
how to use parameters.

16 Chapter 4. Workflows

https://github.com/Computational-Plant-Science/plantit-example-parameters/blob/master/plantit.yaml

plantit, Release v0.0.2-alpha

Default values

To provide default values for your workflow’s parameters, you can use a default attribute. For instance:

params:
- name: message
type: string
default: 'Hello, world!'

Input/output

plantit can automatically copy input files from the CyVerse Data Store or Data Commons onto the file system in
your deployment environment, then push results back to the Data Store after your task completes. To configure inputs
and outputs for a workflow, add input and output attributes to your configuration.

Inputs

If your workflow requires inputs, add an input section to your configuration file, containing at minimum a path
attribute (pointing either to a directory- or file-path in the CyVerse Data Store or Data Commons, or left blank) and a
kind attribute indicating whether this workflow operates on a single file, multiple files, or an entire directory.

Input types (file, files, and directory)

To indicate that your workflow should pull a single file from the Data Store and spawn a single container to process it,
use kind: file. To pull a directory from the Data Store and spawn a container for each file, use kind: files.
To pull a directory and spawn a single container to process it, use kind: directory.

It’s generally a good idea for path to reference a community-released or curated public dataset in the CyVerse Data
Commons, so prospective users can test your workflow on real data. For instance, the plantit.yaml for a workflow
which operates on a single file might have the following input section

input:
path: /iplant/home/shared/iplantcollaborative/testing_tools/cowsay/cowsay.txt
kind: file

Input filetypes

To specify which filetypes your workflow is permitted to accept, add a filetypes attribute to the input section:

input:
path: /iplant/home/shared/iplantcollaborative/testing_tools/cowsay
kind: file
filetypes:
- txt

Any values provided to filetypeswill be joined (with ,) and substituted for FILETYPES in your workflow’s command.
Use this to inform your code which filetypes to expect, for example:

4.2. Binding workflows: the plantit.yaml file 17

https://www.cyverse.org/data-store
https://cyverse.org/data-commons

plantit, Release v0.0.2-alpha

commands: ls "$INPUT"/*.{"FILETYPES"} >> things_cow_say.txt
input:
path: /iplant/home/shared/iplantcollaborative/testing_tools/cowsay
kind: file
filetypes:
- txt
- md

Note that while the input.path and input.filetypes attributes are optional, you must provide a kind attribute if
you provide an input section.

Outputs

If your workflow produces outputs, add an output section with a path attribute to your configuration file. This
attribute may be left blank if your workflow writes output files to the working directory; otherwise the value should be
a directory path relative to the working directory. For example, to indicate that your workflow will deposit output files
in a directory output/directory relative to the workflow’s working directory:

output:
path: output/directory

By default, all files under the given path are uploaded to the location in the CyVerse Data Store provided by the user.
To explicitly indicate which files to include/exclude (this is suggested especially if you workflow deposits files in the
working directory), add include and exclude sections under output:

output:
path: output/directory
include:
patterns: # include excel files
- xlsx # and png files

names:
- important.jpg # but only this .jpg file

exclude:
patterns:
- temp # don't include anything marked temp

names:
- not_important.xlsx # and exclude a particularexcel file

If only an include section is provided, only the file patterns and names specified will be included. If only an exclude
section is present, all files except the patterns and names specified will be included. If you provide both include and
exclude sections, the include rules will first be applied to generate a subset of files, which will then be filtered by
the exclude rules.

18 Chapter 4. Workflows

plantit, Release v0.0.2-alpha

Jobqueue configuration

To ensure your workflow takes optimal advantage of cluster resources, add a jobqueue section. To indicate that
instances of your workflow should request 1 process and 1 core on 1 node with 1 GB of memory with 1 hour of
walltime:

jobqueue:
walltime: "01:00:00"
memory: "1GB"
processes: 1
cores: 1

If a jobqueue section is provided, all four attributes are required. If you do not provide a jobqueue section`, tasks
will request 1 hour of walltime, 10 GB of RAM, 1 process, and 1 core on all agents.

Walltime

When a plantit task is submitted, values provided for the jobqueue.walltime attribute will be passed through
transparently to the selected deployment target’s scheduler. The plantitweb UI will timestamp each task submission,
If such a time limit is provided at submission time, plantitwill attempt to cancel your task if it fails to complete before
the time limit has elapsed.

Virtual memory

Note that some deployment targets (namely the default public agent, TACC’s Stampede2) are equipped with virtual
memory. For tasks deployed to agents with virtual memory, plantit will ignore values provided for the jobqueue.
memory attribute and defer to the cluster scheduler: on Stampede2, for instance, all tasks have access to 98GB of
RAM.

4.3 A simple example

The following workflow prints the content of an input file and then writes it to an output file located in the same working
directory.

name: Hello File
image: docker://alpine
public: True
commands: cat "$INPUT" && cat "$INPUT" >> cowsaid.txt
input:
from: /iplant/home/shared/iplantcollaborative/testing_tools/cowsay/cowsay.txt
kind: file

output:
path: # blank to indicate working directory
include:
names:
- cowsaid.txt

4.3. A simple example 19

https://www.tacc.utexas.edu/systems/stampede2

plantit, Release v0.0.2-alpha

4.4 Repository refresh rate

The plantit web application scrapes GitHub for repository information for all logged-in users every 5 minutes. (If
you’ve just updated a repository, you may need to wait several minutes then reload the workflow page.)

20 Chapter 4. Workflows

CHAPTER

FIVE

DATASETS

• Viewing data

• Downloading data

• Sharing data

• Deleting data

A Dataset is a folder in the CyVerse data store; whether in the user’s personal directory, or in the community iplant/
home/shared/ folder, or in the public data commons.

5.1 Viewing data

To view datasets, navigate to the Datasets tab from the home view. This will present a page with three (3) tabs:

• Yours: your own personal datasets

• Shared: datasets other users have shared with you

• Sharing: datasets you’re sharing with other users

Expand
folder

To expand a folder in the data tree, click the caret button on the right side of the frame.

Expand
folder

21

plantit, Release v0.0.2-alpha

5.2 Downloading data

To download a file from the CyVerse data store, click the download button on the right side of the menu.

Download
file

The data tree will disable itself while the file downloads.

Download
file

Finally a download popup will appear.

22 Chapter 5. Datasets

plantit, Release v0.0.2-alpha

5.3 Sharing data

To share a folder with another user, select the share button on the right side of the menu, then select one or more users
to share the folder with.

Share
folder

After sharing a folder, the receiving user will be able to access it under their Shared datasets tab.

5.4 Deleting data

To delete a personal file or folder in the data store, select the red delete button on the right side of the menu.

Delete

5.3. Sharing data 23

plantit, Release v0.0.2-alpha

data

24 Chapter 5. Datasets

CHAPTER

SIX

AGENTS

• Public agents

• Integrating a new agent

An Agent runs Tasks. Abstractly, an agent is a particular way of connecting and submitting to a cluster, supercomputer
or server equipped with the SLURM scheduling system. Multiple agents can be configured for the same underlying
systems, e.g. to permit submissions to distinct queues.

6.1 Public agents

By default plantit provides a single public agent to all users, free of charge, called Stampede2.

Stampede2

This agent submits jobs to the Stampede2 cluster at the Texas Advanced Computing Center at the University of Texas.
Stampede2 nodes have (up to 96GB of) virtual memory and will ignore workflow-specific memory requests, instead au-
tomatically allocating memory as needed. Batch jobs are submitted in parallel where possible to accelerate processing.
Completion times may vary widely depending on the cluster’s availability and workload at any given moment.

25

plantit, Release v0.0.2-alpha

6.2 Integrating a new agent

Please contact the plantit developers if you would like to bind a cluster or other deployment target at your institution.
User-managed deployment targets must be available via key-accessible SSH — administrators will be provided a public
key to add to their system’s SSH server configuration, allowing plantit remote access. Clusters may be maintained
for private use or made available to all plantit users. A future version of plantit may support agent management
directly in the web UI.

26 Chapter 6. Agents

mailto:wbonelli@uga.edu

CHAPTER

SEVEN

TASKS

• Task monitoring

• Task lifecycle

A Task is a single instance of a workflow. When a task is submitted from the browser, the plantit web app hands
it to an internal queue feeding a background worker. When the worker picks up the task, a job script is generated and
submitted to the selected cluster/supercomputer scheduler. The task lifecycle is a simple state machine strung together
from Celery tasks.

7.1 Task monitoring

For a tutorial on monitoring a task and retrieving results, see the quickstart.

7.2 Task lifecycle

The task lifecycle is a state machine progressing from CREATED to RUNNING to one of several mutually exclusive final
states (COMPLETED, FAILED, TIMEOUT, or CANCELLED).

Task

27

plantit, Release v0.0.2-alpha

Lifecycle

When a task successfully completes, results are automatically transferred to the selected location in the CyVerse data
store. The user is then shown results produced and may download them from the browser individually or bundled into
a single archive.

28 Chapter 7. Tasks

CHAPTER

EIGHT

PROJECTS

A Project is a MIAPPE investigation: a formal ontology for metadata describing a phenotyping experiment.

Entity
relational diagram

The MIAPPE schema permits one or more studies to be associated with each investigation. Each study describes a
particular instance of an experiment, with properties such as start/end dates, location, environmental parameters, etc.

Currently plantit allows users to associate projects and studies with tasks, linking computational analyses to their
experimental context. Eventually we also intend to support:

• associating studies with one or more datasets

29

https://github.com/MIAPPE/MIAPPE

plantit, Release v0.0.2-alpha

• tagging data objects as samples of biological materials

• image annotations

30 Chapter 8. Projects

CHAPTER

NINE

EXAMPLES

• Hello world

• Parameters

• Accessing data

Several example workflows are provided as templates. They demonstrate essential features, namely:

• invoking a command

• using parameters

• accessing data

9.1 Hello world

This is just about the simplest possible workflow it’s possible to host on plantit.

TODO: describe log files in results

9.2 Parameters

This workflow demonstrates the use of user-configurable workflow parameters.

9.3 Accessing data

This workflow shows how to construct a workflow with inputs and ouputs.

31

https://github.com/Computational-Plant-Science/plantit-example-hello-world
https://github.com/Computational-Plant-Science/plantit-example-parameters
https://github.com/Computational-Plant-Science/plantit-example-accessing-data

plantit, Release v0.0.2-alpha

32 Chapter 9. Examples

CHAPTER

TEN

ARCHITECTURE

• Motivation

• Technologies

10.1 Motivation

plantit is middleware binding GitHub and CyVerse to various institutional clusters & supercomputers via a web
interface. Broadly, plantit aims to reinvent as little as possible, gluing existing tools together in ways that make
data-intensive plant phenomics accessible and reproducible.

10.2 Technologies

The plantit stack is predominantly Python. The backend is Nginx, Gunicorn, Django + Channels, Celery, Redis, &
Postgres, orchestrated with Docker Compose. The frontend is Vue.

Architecture

Feel free to reach out if you’d like to contribute to plantit development, start your own instance of plantit some-
where, modify it for another discipline, etc.

33

mailto:wbonelli@uga.edu

plantit, Release v0.0.2-alpha

34 Chapter 10. Architecture

CHAPTER

ELEVEN

CONTRIBUTIONS

• Configuring a development environment

• Command cheatsheet

– Docker Compose

– Docker

– Django

We welcome contributions to the plantit codebase, from bug reports to documentation fixes to pull requests of all
kinds! All development planning is carried out on GitHub: see the Changelog/Roadmap and Issues in particular.

11.1 Configuring a development environment

See the README for instructions on installing the project from source.

11.2 Command cheatsheet

Below is a list of handy commands for managing the plantit application.

11.2.1 Docker Compose

• docker-compose -f docker-compose.dev.yml up: bring the full application (all containers) up

• docker-compose -f docker-compose.dev.yml down: bring the full application (all containers) down

• docker-compose -f docker-compose.dev.yml run plantit <command> run a command in the
plantit container (starting containers as needed)

• docker-compose -f docker-compose.dev.yml exec plantit <command> run a command in the
plantit container (assumes all containers are up)

35

https://github.com/Computational-Plant-Science/plantit/issues/new
https://github.com/Computational-Plant-Science/plantit/wiki/Changelog-&-Roadmap
https://github.com/Computational-Plant-Science/plantit/issues
https://github.com/Computational-Plant-Science/plantit

plantit, Release v0.0.2-alpha

11.2.2 Docker

• docker ps: list running containers

• docker exec -it <container ID> bash: enter an already running container

11.2.3 Django

• ./manage.py: list Django commands

• ./manage.py makemigrations: create plan for django migrations

• ./manage.py migrate: run django migrations

• ./manage.py shell: opens Django Python interpreter

36 Chapter 11. Contributions

	About plantit
	What is it?
	What isn’t it?
	What can I use it for?

	Quickstart
	Use cases
	Conceptual model
	Datasets
	Agents
	Workflows
	Tasks
	Projects

	Submitting tasks
	Select a workflow
	Submit to an agent
	Monitor status
	Retrieve results

	DIRT Migration
	Migrating DIRT datasets

	 Workflows
	Using workflows
	Binding workflows: the plantit.yaml file
	Required attributes
	Name
	Author
	Image
	Commands

	Optional attributes & sections
	Public
	Email
	Shell
	GPUs
	Environment variables
	Parameters
	Default values

	Input/output
	Inputs
	Input types (file, files, and directory)
	Input filetypes

	Outputs

	Jobqueue configuration
	Walltime
	Virtual memory

	A simple example
	Repository refresh rate

	 Datasets
	Viewing data
	Downloading data
	Sharing data
	Deleting data

	 Agents
	Public agents
	Integrating a new agent

	 Tasks
	Task monitoring
	Task lifecycle

	 Projects
	Examples
	Hello world
	Parameters
	Accessing data

	Architecture
	Motivation
	Technologies

	Contributions
	Configuring a development environment
	Command cheatsheet
	Docker Compose
	Docker
	Django

